Polar vortexes and clean energy in the Upper Midwest | A New Shade of Green | Sherry Listgarten | Mountain View Online |

Local Blogs

A New Shade of Green

By Sherry Listgarten

E-mail Sherry Listgarten

About this blog: Climate change, despite its outsized impact on the planet, is still an abstract concept to many of us. That needs to change. My hope is that readers of this blog will develop a better understanding of how our climate is evolving a...  (More)

View all posts from Sherry Listgarten

Polar vortexes and clean energy in the Upper Midwest

Uploaded: Feb 21, 2021
Given the awful power grid mess in Texas, it’s interesting to look at the ongoing electricity planning discussions for the Upper Midwest. In the summer of 2019 the region’s power provider, Xcel Energy, put together a resource proposal for the next 15 years that achieves an impressive 80% reduction in emissions by 2030 (from 2005 levels).


Xcel Energy plans to decrease emissions by 80% from 2005 levels by 2030. (Source: Upper Midwest Integrated Resource Plan for 2020-2034, 2019)

The 156-page report is comprehensive and thoughtful. Xcel did a lot of work on their own, plus hired a top-notch firm (E3) to do an independent analysis. Xcel collaborated with environmental organizations and community stakeholders over several years, and has been transparent about their planning methodology, adjusting it based on feedback. Their analysis combines advanced modeling of power plant performance and costs with real-world experience reflecting how systems perform in cold weather and on hot summer days. The report pays close attention to reliability, cost, and emissions reductions, as well as impact on local communities.

Xcel Energy proposes to retire all of its coal plants a decade early and to add considerable solar and wind energy. It will also ramp up energy efficiency and sources of flexible demand (e.g., electric air conditioners or water heaters that the utility can adjust when power is tight). They plan to extend one nuclear contract and increase gas production to supplement and complement the growth in grid renewables.


Xcel Energy looks to significantly grow wind, solar, and natural gas by 2034 while eliminating coal (Source: Upper Midwest Integrated Resource Plan for 2020-2034, 2019)

Impressive. But some are asking, can they do better? Over the last few weeks several organizations have filed comments on Xcel’s proposal, some of which are so substantive that they amount to independently-crafted proposals. Analysts hired by environmental organizations used the same modeling software as Xcel did, but adjusted some parameters. The reports claim to show that plans with no added gas can achieve similar or better reliability and cost.

One analysis by the Energy Futures Group, done on behalf of four environmental organizations, identifies a number of mistakes in the initial modeling, fixes those, and incorporates new information about model parameters that has become available since Xcel’s proposal was published in mid-2019. For example, they adjusted costs and lifetimes for renewables and batteries to updated standard values, incorporated a few renewable projects that Xcel has already approved, and added support for hybrid solar (solar plus battery). (1) Their analysis also assumes that somewhat longer duration storage (flow batteries) will be available in twenty years. With this, they found no need for additional natural gas, as shown in the “Clean Energy Plan” below.


One group of environmental organizations adapted the model that Xcel used to show that significant amounts of solar-plus-battery (“solar hybrid”), combined with small amounts of longer duration flow batteries can eliminate the need for additional gas (noted as “CT” and “Sherco CC”). (Source: A Clean Energy Future for Xcel by the Energy Futures Group, 2021)

The Sierra Club has also contributed a very in-depth analysis, again using the same modeling platform as Xcel used. They found and addressed many of the same issues as the Energy Futures Group report. Battery plant life estimates were too low, solar and wind costs too high, renewable plants constrained to be very large, solar-plus-battery projects were missing, improved wind technology was not reflected, and so on. They observed, as did the Energy Futures Group, that the new gas plant (“Sherco”) seems to have been hard-coded into all of the model runs. When they make it optional, it is not recommended by the modeling software since it seems to increase costs without increasing reliability. Their plan does not require additional gas resources.

The Sierra Club also looked closely at whether the contract with the Monticello nuclear plant needs to be extended, as proposed by Xcel Energy.

Xcel does not shy away from its commitment to nuclear energy, saying that nuclear is “an important system resource during the winter months, as it does not experience fuel supply issues and has a great track record during cold weather events.” They add that transmission constraints make nuclear necessary: “We simply could not maintain our system reliably, or affordably, given the massive renewable additions and corresponding transmission infrastructure that would be required to replace our Monticello nuclear plant, if it were even possible by 2030, given (our system’s) current transmission expansion issues.”

The Sierra Club report does not dismiss Xcel’s transmission concerns, but instead notes that small local renewable deployments, especially solar and batteries, can help address that concern. They say that “traditional resource planning tools neglect the significant reliability and diversity benefits of distributed generation”, and recommend tripling the amount of community solar and other distributed generation. They emphasize that these smaller plants create more local jobs and increase community investment when compared to utility-scale renewables, while also reducing pressure on the transmission grid.

The differences in the two plans are summarized in this chart below from the Sierra Club’s proposal.


The Sierra Club recommends significantly more hybrid solar, distributed solar, and battery storage, and no additional gas or extension of nuclear. (Source: Sierra Club submitted comments, 2021)

It is interesting, in light of the disaster in Texas, to understand what the proposals say about grid performance in cold weather, which can be extreme in the Upper Midwest. Xcel calls out two examples: the polar vortex of 2019 (January 28-30), and a more typical cold winter day (February 5). The graph below shows virtually no wind production during those times.


This chart shows fall-offs in renewables during the polar vortex of 2019 (see Jan 30) and during a more typical winter day (Feb 5). Source: Xcel Energy’s Reliability Appendix in this document.

Xcel is concerned about the duration of these events and the ability of batteries to handle them. For example, regarding February 5 they say: “Between 7:00 a.m. and 11:00 p.m., there were 16 consecutive hours where Net Load (load not handled by renewables) was over 5,400 MW. Due to the duration and magnitude of this shortfall, neither (flexible load) nor energy storage could substantially contribute to reducing the Net Load, at least for the entire period.” Substantial amounts of imported energy kept the lights on, though Xcel also requested that people turn down their thermostats. (2) Xcel’s resource plan says, with notable foresight, that the 2019 polar vortex, “although extreme, … may reasonably be expected to occur again”.

The Sierra Club, in response, points out that (as was the case in Texas) there were many resource outages during the polar vortex, with fossil plants affected as much as wind. While the wind outages were more of a surprise, the grid improved its winter wind forecasting immediately after this weather event by adding a temperature limit for wind turbines.


During the 2019 polar vortex, about 25% of capacity was offline, including fossil fuel and wind. (Source: MISO January 29-30 Maximum Generation Event Overview, 2019)

The Sierra Club mentions the possibility of weatherizing renewables (e.g., turbine insulation and heaters), but overall takes the stance that imports are the right solution here. “Power system planners, like all infrastructure engineers, do not design the system to be perfectly reliable during all conceivable events, as the cost of building such a system would be prohibitive and outweigh the benefits….The extreme temperatures necessary to cause generator failures will not affect a large geographic area simultaneously, and so any local drops in output can be addressed with imports from other parts of (our power market), or other regions.” They also suggest, with considerably less foresight than Xcel, that “this was an historic event, so such an extreme event is unlikely to be repeated for some time.”


The Upper Midwest’s power market, MISO, imported large amounts of energy from nearby PJM during the 2019 polar vortex. All markets from SPP east are part of the “Eastern Interconnection” with the exception of Texas’ ERCOT. (3)

So, what is the right answer for Xcel Energy and the Upper Midwest? Should they add more gas to their grid and extend the life of their nuclear plant in order to shore up variable renewables? Or should they double down on batteries, smart combinations of renewables (4), and imports to build an efficient, reliable, and even lower-emission grid? How do we evaluate the cost, reliability, and risk of different energy portfolios given so many unknowns? We have some good ideas about how technology, costs, and climate will evolve, but there are many gaps. We have to make our best guesses and create a plan that can flex as we learn more. Do we continue to invest in fossil fuel infrastructure, as Xcel recommends, or place a bigger bet on evolving technology and lean into the future with a cleaner ambition? This is a very interesting and important discussion.

Notes and References
0. An article from Inside Climate News inspired me to look at these resource plans for the Upper Midwest.

1. Xcel had largely disabled that option due to concerns about how long the modeling program would take to run.

2. Xcel says: “The level of these resources that MISO had to use to remain operational and avoid further emergency actions ranged from 5,000 MW to 11,500 MW – with an average of 6,500 MW on January 30th. The maximum offered reserve resources was 13,500 MW, which MISO nearly exhausted at one point in order to avoid a critical deficiency in available energy.” (MISO stands for Midcontinent Independent System Operator, and is the power market for the Upper Midwest, just as CAISO is the power market for our area.)

3. Texas is an island when it comes to electricity. This can hurt reliability and cost.


Source: ERCOT

4. The Sierra Club proposal has an interesting section detailing how combinations of renewables mutually amplify one another. See pages 66-67 (pdf pages 71-72) of their analysis.

Current Climate Data (January 2021)
Global impacts, US impacts, CO2 metric, Climate dashboard (updated annually)

Comment Guidelines
I hope that your contributions will be an important part of this blog. To keep the discussion productive, please adhere to these guidelines or your comment may be moderated:
- Avoid disrespectful, disparaging, snide, angry, or ad hominem comments.
- Stay fact-based and refer to reputable sources.
- Stay on topic.
- In general, maintain this as a welcoming space for all readers.
Local Journalism.
What is it worth to you?

Comments

Posted by Resident8, a resident of Duveneck/St. Francis,
on Feb 21, 2021 at 12:34 pm

Resident8 is a registered user.

Great article. It would be great if any of these environmental groups could audit Palo Altos Utility power plans, especially 80/30


Posted by Tom, a resident of Menlo Park,
on Feb 21, 2021 at 12:56 pm

Tom is a registered user.

Hi Sherry,
Thanks again for another great post. As both a utility resource planner and building energy engineer I see some synergies that planners and policy makers may want to pursue to deal with:
1) the general clean-resource-tight season of winter (in California and many places),
2) climate change induced wild cold weather events like loss of jet stream containment of arctic cold. (aka polar vortex).
It makes sense to pursue high insulation levels, ventilation heat recovery, and drain-line heat recovery and high efficiency choices in electric heat pumps, and low to zero duct losses by using ductless systems or ducts in conditioned space, etc. These design choices help our buildings put less load on the grid in winter and they cope with outages better (stay more comfortable with less backup energy).
The Interconnection map at bottom showing ERCOT as an island is a good lesson in the need to interconnect to share diversity between regions. I hope bulk power grid flow enhancements will decrease the need for running dirty peakers and for curtailing clean energy or hogging the world's batteries when a transmission fix would've let those batteries go to decarbonize cars and trucks.


Posted by West Menlo Mom, a resident of Menlo Park: University Heights,
on Feb 24, 2021 at 1:03 pm

West Menlo Mom is a registered user.

Great article - thank you!


Posted by coughvid, a resident of Midtown,
on Feb 25, 2021 at 10:54 pm

coughvid is a registered user.

Or, have the government invest in jump starting modular nuclear reactors which are clean and safe.


Posted by Jed Larraby, a resident of another community,
on Feb 26, 2021 at 12:11 pm

Jed Larraby is a registered user.

Ed note: This comment was removed because it disregards established science and lacks evidence. (The poster believes we should be more concerned with global cooling than global warming, yet neglects to compare the impacts of the two and seems to disregard ample evidence to the contrary.)


Posted by Sherry Listgarten, a Mountain View Online blogger,
on Feb 26, 2021 at 12:48 pm

Sherry Listgarten is a registered user.

@Resident8: What concerns do you have with Palo Alto's power portfolio? (Such an audit would be expensive, so why do you suggest that additional expense?) You can find a portfolio analysis and some options here.

@Tom, yes, winters are increasingly becoming a focus of grid planning and your many suggestions for reducing demand are great. I also agree that long-distance transmission can do a lot to keep costs down and increase reliability.

@coughvid: The government is doing that.


Posted by Dave Parker, a resident of East Palo Alto,
on Feb 27, 2021 at 12:12 pm

Dave Parker is a registered user.

Global warming is primarily a hobby and concern for those already living comfortably, mostly affluent white folks.

Try emphasizing this eco-problem to poor folks living in the ghetto with no heat, poor water and minimal electricity.

Just a little 'in-house warming' would be gratefully appreciated.


Posted by Sherry Listgarten, a Mountain View Online blogger,
on Feb 27, 2021 at 4:06 pm

Sherry Listgarten is a registered user.

@Dave: It's true that it can be hard to balance short-term difficulties with longer-term difficulties. FWIW, it's pretty clear that climate change will impact lower-income households more than higher-income households. Here is one reference.

With a well designed green recovery, there is much hope for improved socio-economic equality. Here is one report of that promise.


Follow this blogger.
Sign up to be notified of new posts by this blogger.

Email:

SUBMIT

Post a comment

On Wednesday, we'll be launching a new website. To prepare and make sure all our content is available on the new platform, commenting on stories and in TownSquare has been disabled. When the new site is online, past comments will be available to be seen and we'll reinstate the ability to comment. We appreciate your patience while we make this transition..

Stay informed.

Get the day's top headlines from Mountain View Online sent to your inbox in the Express newsletter.